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Abstract 
A new mathematical description of phase relation- 
ships which connects different approaches, both in 
reciprocal and direct space, is formulated. It leads to 
the development of a novel algorithm for phase 
extension and refinement based on a probability func- 
tion for atomic presence. This function, calculated 
from the elements of the Karle-Hauptman inverse 
matrix, is used in an iterative procedure. Various tests 
have been performed on an idealized set of calculated 
structure factors for an insulin model structure. The 
method has been applied to experimental data, Fobs, 
and the isomorphous phases for 2Zn insulin. An 
assessment of the quality of the phase refinement and 
calculation has been made by comparison with the 
crystallographically refined phases. 

Introduction 
Direct methods, at the present stage, are not powerful 
enough to allow the ab initio determination of protein 
structures. But they can be used in order to improve 
and/or  extend a set of approximate phases at medium 
resolution. This extension may lead to a set of phases 
at higher resolution corresponding to a Fourier series 
which can provide a better set of atomic coordinates 
for subsequent refinement. Different mathematical 
approaches have been developed and used in prac- 
tical work: the tangent formula method (Hendrick- 
son, Love & Karle, 1973); the Sayre (1972, 1974) 
equations; the determinantal methods (de Rango, 
Mauguen & Tsoucaris, 1975; CasteUano, Podjarny & 
Navaza, 1973 ; Podjarny, Yonath & Traub, 1976; Pod- 
jarny & Yonath, 1977; Mauguen, 1979; Podjarny, 
Schevitz & Sigler, 1981); and the filter type methods 
(Gassmann, 1976; Raghavan & Tulinsky, 1979; 
Schevitz, Podjarny, Zwick, Hughes & Sigler, 1981; 
Collins, 1982). 

A brief description of the application of the deter- 
minantal methods to actual protein structures has 
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been the object of several communications (Xth Int. 
Congr. Crystallogr., Amsterdam, 1975; IVth Eur. 
Crystallogr. Meet., Oxford, 1977; Xlth Int. Congr.. 
Crystallogr., Warsaw, 1978; de Rango, Mauguen, 
~'soucaris, Dodson, Dodson & Taylor, 1979). 

Here, we give a new mathematical description, 
including the connection between different- mathe- 
matical approaches: the probability of atomic pres- 
ence ~'(r) function, the regression method and the 
forbidden domain theory of von Eller. Then, we 
describe the algorithms and the practical procedure. 
Next, we give the results of preliminary tests on an 
idealized set of data constituted of calculated struc- 
ture factors for an insulin model structure. Finally, 
we apply the procedure to actual problems using the 
insulin crystal data and report a detailed analysis of 
the results of phase extension of the 1.9/~ isomor- 
phous data to 1.5/~ resolution. 

I. Theoretical aspects of the regression equation 
( a) The probability of atomic presence functions 

Let us consider a periodic function, p(r), whose 
Fourier coefficients are known up to a certain resol- 
ution, R. The Fourier series 

p0(r) = ~ En exp ( -27r i l l .  r), IHI < 1 / R, 
H 

is an approximation to p(r). If the set of Fourier 
coefficients is the only information we possess on 
p(r), it is well known that po(r) is the best 
trigonometric approximation to p(r). But if we know 
something a priori about p(r) (positivity, atomicity 
etc.), then the problem can be restated in terms of 
probability theor2¢: we are seeking the best approxi- 
mation p'(r) to p(r), given a limited set of Fourier 
coefficients and the a priori information, which 
corresponds to a minimum for the least-squares 
expression: 

{ P ( r ) -  p'(r)} 2 d3r. 

When p(r) is known to be an atomic structure, the 
problem can be formulated differently. We are now 
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interested only in the atomic positions, not merely in 
the value of the p(r) function outside the N atomic 
positions. More precisely, we are looking for a con- 
tinuous probability density of atomic presence at the 
point r, given a limited set of Fourier coefficients and 
the a priori information: 

p(r/E's, information). ( 1 ) 

Actual mathematical expressions for (l) will be 
discussed shortly. "For the moment we assume that 
such an expression has been computed in a practical 
case where low resolution and phase errors do not 
allow the assignment of individual atoms, or even 
groups of atoms. Then the question arises how to 
improve the phases and/or  extend them to higher 
resolution (assuming that the moduli of the structure 
factors at higher resolution are available). The above 
probability function provides an immediate answer: 
the Fourier coefficients of (1) are different from those 
of p0(r) and may provide better and/or extended 
phases. These phases, associated with the observed 
moduli IEnl, will be introduced in a new calculation 
of (1), and so on, as shown in the following scheme: 

FT 
p(r moduli, ~initial, information) , t~better (2) 

] I 
(FT= Fourier transform). This scheme differs from 
the classical process involving successive calculations 
of Fourier series and structure factors, where the po(r) 
function is interpreted and modified accordingly by 
the crystallographer to obtain a function Pbet ter ( r ) ,  
whose Fourier coefficients are better and/or  exten- 
ded. Here, such an interpretation is completely 
avoided. The information allowing the interpretation 
and improvement of p0(r) in the classical process is 
now (at least partially) incorporated in the probability 
of atomic presence, expression (1); the improved 
phases in each cycle are automatically capitalized in 
the same expression for the next cycle. 

We come now to the mathematical expression of 
(1). The first historical attempt is perhaps the 'forbid- 
den domain' theory of von Eller (1962, 1964), 
although the mathematical apparatus does not 
involve probability theory. The main idea can be 
summarized as follows: let us 'subtract' one atom, at 
position r, from a given N-atom structure. If r 
coincides with an actual atomic vector rj ( j =  
1 , . . . ,  N),  this operation results in an imaginary (N  - 
1)-atom structure whose structure factors 

l 
Uh = UH---~ exp (27rill. r) 

involve all positive scattering factors. It follows that 
the Karle-Hauptman (1950) determinant associated 
with this ( N -  l)-atom structure and denoted ~D,,(r) 

(s for the subtracted atom) is non-negative: 

~D,,, (r) -> 0. (3) 

But if r does not coincide with an actual atomic vector 
rj, the subtraction now leads to an electron density 
function Sp(r) constituted by ( N + l )  atoms: the 
actual N atoms plus a 'negative' atom at r. Then, the 
corresponding SD,, determinant may become 
negative. 

Next, let us assume that the phases of the structure 
factors involved in a low-order determinant are 
known. Even if this limited number of phases is not 
sufficient to produce an interpretable electron density 
map, it is still possible that some information can be 
obtained from yon Eller's theory about the actual 
distribution of atoms in the unit cell, as follows: 

~Dm(r)=Det Upq--~exp[2~i(Hp-Hq).r] . (4) 

The SD,, is computed for each position r of the 
subtracted atoms. The value SDm(r) is plotted: the 
domains in the unit cell corresponding to negative 
values of ~D,,(r) are the 'forbidden domains' for 
atomic presence (Fig. 2 in yon Eller, 1962). 

In other words, the above theory may assign the 
probability zero or non-zero for the atomic presence 
at position r. In practice, the allowed domains are 
not small enough for actual applications, except for 
very simple structures. However, probability theory 
can bring further restrictions by introducing the 
notion of 'most probable domains' for atomic pres- 
ence. This can be done by using in direct space the 
probabilistic meaning of the maximum determinant 
rule instead of the strict algebraic meaning of (3) (de 
Rango, 1969; Tsoucaris, 1970). 

Dm(correctphases)--  maximum. (5) 

~D,,(¢o . . . .  tph . . . .  ) =  m a x i m u m .  (6) 

We recall that the a priori information introduced 
consists of positivity, atomicity, total number of atoms 
N, knowledge of unitary (U's)  or normalized (E's) 
structure factors and symmetry. 

A general and precise mathematical expression for 
(1) is to be developed. Such an expression should 
yield a probability density p = 0 in all eases where 
~Dm(r)<0. This remark suggests a combination of 
(3) and (6) which can be used in practical work: 

p(r/E,s, information)oz{Tm(r) ifSDm(r) > 0 
if ~D,,, (r) - 0" 

(7) 

We note that the probability expression (7) depends 
on r only through the value of the determinant. 

We cannot, for the moment, provide a strict justifi- 
cation of (6) and (7). However, there exist several 
independent indications. Firstly, Lajzerowicz & 
Lajzerowicz (1966) have shown that SDN (r) has indeed 



DE RANGO, MAUGUEN, TSOUCARIS, DODSON, DODSON AND TAYLOR 5 

the meaning of a presence probability function under 
specific conditions. Next, qualitative arguments as 
well as experimental evidence (Tsoucaris, 1981 ; Tay- 
lor, Woolfson & Main, 1978) support the correctness 
of (5). 

The same remarks can be applied to ~Dm in (6) as 
well. Finally, it has been shown algebraically from 
the maximum determinant rule that SD m is maximum 
around the atomic position (Knossow, de Rango, 
Mauguen, Sarrazin & Tsoucaris, 1977). Other alge- 
braic approaches connected with the strict equality 
can be mentioned (Goedkoop, 1952), 

Din=0 f o r m - > N + l ,  

which also lead to algorithms allowing the atomic 
positions to be determined from a limited set of 
structure factors (Collins, 1978; Navaza & Silva, 
1979). 

We will now derive from the regression equation 
theory, which has been developed and applied pre- 
viously in reciprocal space (de Rango, Tsoucaris & 
Zelwer, 1974), a new approach which will be shown 
to be closely connected with (7). 

( b) The regression equation: connection with direct 
space 

It has been shown from the maximum determinant 
rule (Tsoucaris, 1970; de Rango, Mauguen & 
Tsoucaris, 1975) that the expected value En of a 
normalized structure factor is given by the regression 
equation: 

1 m 
= = -  E DpqEL-H,, (8) /~n /~L-nq Dqq p=l 

p # q  

where Dpq are the elements (row p, column q) of the 
inverse of a Karle-Hauptman (1950) (K-H) matrix 
II ull,, of order m defined by the m vectors Hv (p = 
1 , . . . ,  m), whose elements are Upq = Unp-nq; the m 
structure factors EL-rip (P = 1 , . . . ,  m) are the ele- 
ments of the last row of the K-H matrix II Ullm+l 
obtained by adding L to the set {Hp}. 

On the other hand, it has also been shown 
(Knossow et aL, 1977) that the 'forbidden domain' 
function of yon Eller, SDm(r), can be written 

1 m 
SDm(r)= Om----~ ~, Dvq exp[-27ri(Hv-Hq) .r] 

p,q=l  

(9) 
with Dm =det  {ll UIIm}" 

Collecting together all the terms such that k =  
H p -  Hq, we can rewrite (9) as 

 Dm(r) = Dm +1__ Ck exp [ -2~ ik .  r] (10) 
N 

with Ck defined as 

Ck=-- ~ 8{k- (Hp-nq)]D.q ,  (11) 
p,q=l 

where 

{~ i f H p - H q = k  
8{k-  ( n p - n q ) }  = if H p - n q  # k" 

Now, starting from (8), make L - - H + H q  to get the 
qth estimate of En: 

1 m 

= - -  E DpqEH-(Hp-Hq)" (En)q Dqq p = l  

P#q  

Assuming the errors in these estimates to be statisti- 
cally independent for different values of q, the best 
global estimate (/~rl) is the weighted average of all 
the (EH)q, each weighted by its inverse variance 
1 / tr 2 = Dqq. Therefore, 

(-E-Hn)= (q~i Dqq)-' ~= Dqq(-E-Hn) q 

-! ~ DpqEH-(H,-Hq)}" 
Using Ck as defined in ( l l ) ; w e  get 

(En)= Dqq E CkEa-k. 02)  
q=l k # 0  

On the r.h.s, of (12) appears the convolution product 
of two sets of Fourier coefficients; the corresponding 
functions in direct space are 

p(r) = ~ EIa exp ( -2 t r i l l .  r) 
H (13) 

r(r) = E Ca exp (-27ri l l .  r). 
H ~ 0  

This last function is, apart from an additive constant 
and a multiplicative constant, the 'forbidden domain' 
function of von Eller, SDm(r). Indeed, from (13) and 
(10) we get 

~'(r) = N(SDm(r)- Din)- C(0). 

Therefore, the Fourier transform of (12) leads in 
direct space to the equivalent equation: 

p(r) oc -r(r)p(r). (14) 

This equivalence establishes a link between the purely 
algebraic approach in direct space of von Eller and 
the statistical considerations in reciprocal space 
which are the basis of the regression equation. 

Equation (14) suggests that the following iterative 
scheme can be applied in direct space: 

p(/+l)(r) oC r(r)p(i)(r), (15) 

where the observed moduli I EHI are imposed; or, 
more precisely, 

FT-I  
, ( IE. ,ol  ('+'), rl¢~(i+l)'~ "*'calc / (16) 

FT 

(IEobsl, "~'calc / ' p°+')(r), ( 1 7 )  
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where p°)(r) is the approximation of the electron 
density obtained in cycle (i). A similarity appears 
between the above scheme and that used in the elec- 
tron density modification methods (Collins, 1975; 
Gassmatm, 1966), which can be formulated as 

p°+l)(r) oc g[p°)(r)]p(°. 

Note that, starting from such a formula, Gassmann 
(1976) succeeded in obtaining, inversely, the 
maximum determinant rule. 

II. The computational procedure 

The problems arising in the use of the theory 
described above are amenable to standard techniques 
and, according to the general scheme developed in 
§ I(b), an algorithm has been devised using the prod- 
uct function r(r)p(r).  This algorithm is based upon 
a fixed function r(r) which allows us to exploit the 
initial information (the phases to low resolution, Ro, 
and all moduli to higher resolution, R,). Once this 
function is determined, cyclic calculations, involving 
only fast Fourier transformations (FFT), lead to the 
evaluation of new phases corresponding to higher 
resolution R~ according to the following general 
scheme: 

Moduli, II uII ;.' / 
/ 

a priori informationJ 

FFT 

/ 

-"* z(r)~(i)(r) FFT_'~ IEca, I exp ~ca~ 

1.0 ~ 

phase 
combination 

The algorithm is developed in two main stages. 
First stage. A unique II u Il~ matrix is built up to 

resolution Ro and inverted to provide the C's (11), 
and finally the r(r) function from (13). 

Second stage. The phases to resolution Ro are intro- 
duced in the r(r)p(r) expression; operation (16) yields 
better and/or  extended phases ¢~i+t), leading by (17) 
to a better p('÷l)(r) function which is recycled in (16), 
and so on. 

The principle of this procedure is similar to that 
used in the application of the regression equation 
method in reciprocal space, which was described in 
a previous paper (de Rango, Mauguen & Tsoucaris, 
1975), referred to hereafter as paper 1. However, in 
spite of the formal mathematical equivalence between 
the regression equation and the r(r)p(r) function, the 
practical algorithms of the second stage are different. 
We recall that in reciprocal space, once the matrix 
inversion is done, the cycling procedure consists of 
using a set of structure factors EL to build up the last 

row and column of a set of matrices II Ull~+l and then 
calculating for each element of these rows an esti- 
mated phase. Finally, the partial determinations 
obtained by all the II uIl~+, matrices are combined 
for each reflexion. 

The development of the computational procedures 
was carried out using calculated structure factors 
derived from a set of atomic coordinates for 2Zn pig 
insulin in order to avoid experimental errors while 
investigating the ability of the method to extend 
phases with reasonable accuracy and to produce 
interpretable electron density maps. In all stages, we 
use normalized structure factors calculated by the 
Wilson method. 

(a) The fixed r(r) function 
The matrix construction at this stage is difficult to 

control as there is no general procedure that will 
always produce a 'good matrix'. The main problem 
is that the phases of the m(m - 1)/2 structure factors, 
elements of an m-order matrix, may be largely 
erroneous or even totally unknown. These structure 
factors depend in fact only on the choice of the (m - 1 ) 
elements of the top row ('basic element'). It has been 
shown, in paper 1, that a selection must be applied 
in order to get good conditions in the phase refine- 
ment and extension procedure. This selection 
becomes too restrictive if structure factors which gen- 
erate incomplete rows are not accepted as basic ele- 
ments. But we can reasonably expect that a certain 
tolerance is acceptable in the number of unknown 
elements. An a priori estimation of the occupancy 
factor (percentage of known elements) can be 
achieved (Mauguen, 1979), as follows. 

Suppose that the structure factors, which are known 
in modulus and phase, are included in a sphere of 
radius R, and that the basic elements Unj are chosen 
in a sphere of radius r ( r <  R). It is clear that all 
elements Un,-nj will be known if the elements Un, 
are chosen inside the sphere of radius r with r < R/2.  
For values of r higher than R/2 ,  the occupancy factor 
(OF) will decrease when r increases. The variation of 
the OF can be estimated a priori as a function of the 
values of x =  r / R  (see Fig. 1 and Appendix I). The 

05 
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Fig. 1. Variation of the occupancy factor (OF) as a function of 
x = r/R. 
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curve is very close to the experimental one given by 
Podjarny & Yonath (1977). From practical applica- 
tions it was found that good phase estimations can 
be obtained for values of OF higher than 0.7 corre- 
sponding to a ratio r /R<0.8 .  But in practice the 
basic elements are selected by using several criteria 
which maximize the value of the modulus of the 
elements and reduce the number of the unknown 
elements in each row. Under these conditions the 
values of the OF are higher than 0.7 even for values 
of x higher than 0.8. This fact is very important since 
it gives rise to a larger choice of basic elements (if 
x = 0.8 instead of 0.5, the number of possible basic 
elements is multiplied by 4). 

The number of unknown elements in the matrix 
can be reduced by evaluating approximately the 
phases of the unknown elements UH,_Hj , either by 
symbolic addition involving the phases of the two 
basic elements UHi and UHj 

~t)Hi--Hj = ('PHi - -  ~ H j ,  

or from the classical tangent formula using the 
structure factors included in two rows 

~H,-Hj = phase of (}-'. E Hi-sp EHp-H~) • 
p 

However, the phases then obtained can be largely 
erroneous for protein structures and lead to negative 
determinants. In practice, if the OF is large enough, 
the most efficient treatment is to put the elements 
UH,-H~ equal to zero. Moreover, when a certain num- 
ber of off-diagonal elements of a matrix II gll m, con- 
sidered as a covariance matrix, are replaced by zero 
we get an approximation in which we assume that 
the correlation coefficient between two random vari- 
ables, Ei and Ej, is equal to zero. This means that 

(E*i Ej) = (EL*_H, EL_H)L = 0 

instead of 

(e?  ej> = UHi-Hj. 

This has also been discussed by Castellano et al. 
(1973) and applied by Podjarny & Yonath (1977). 
For practical applications, the unobserved structure 
factors and those having a phase determined with too 
low a figure of merit (usually lower than 0.3) have 
been treated in the same way. 

Apart from these procedures, the algorithm for 
building up the matrix was developed following the 
guidelines given in paper 1. 

Firstly, a certain number of reflexions which will 
constitute the set of possible basic elements are 
chosen as a function of the modulus and the figure 
of merit (usually FOM > 0.7). These reflexions lie in 
a resolution range such that a sufficient number of 
terms of the matrix have a resolution higher than the 
initial limit of the input of the matrix. Symmetrical 

Table 1. Parameters used in the construction of 
matrices II vllm in different cases of phase refinement 

and extension 

(1) F r o m  3.5 to 2 . 5 / ~  ( ca l cu l a t ed  da ta ) .  
(2) From 2.8 to 1.9 A (experimental data). 
(3) From 1-9 to 1.5 A (experimental data). 

Selection of basic elements Value of 
Order Resolution d [E[min OF Dm 

l 300 4 . 2 - < d - < 9 A  1.1 0"93 0 . 4 x l 0  -17 
2 400 4 . 0 - < d - - 9 A  1"2 0"92 0"4x10 -22 
3 400 2.5--< d-< 6/~, 1"4 0"88 0.3 x l 0  -17 

reflexions may be included, but in practice it has been 
found desirable to restrict the elements of the top row 
to a unique set in a fixed order (usually 50% of the 
final order required). Very-low-resolution reflexions 
are also omitted as they lead to the introduction of 
structure invariants into the determinant whose prob- 
abilities are estimated too high when calculated on 
the basis of the magnitude IEobsl. 

Next, the first element is chosen. Usually, the high- 
est modulus reflexion is taken but any other reflexion 
can be imposed. Then, for a given order mo, all the 
interactions UH-Hi, between the (m0'- 1) basic ele- 
ments already chosen and each element of the set of 
possible basic elements are sorted. Among all possible 
basic elements the next one selected corresponds to 
the maximum of the following expression: 

CI -" X [EH,EHpEH,-Hp COS (~Hp - -  (~0H i "3L q ~ H r H p ) .  
P 

The summation extends over the basic elements 
already chosen. The mean value of C~ for each row 
should decrease smoothly with increasing order and 
negative values occur rarely, if at all, at high orders. 
Additional criteria are introduced: for each row the 
mean value of the figure of merit and the occupancy 
factor are kept higher than given limits. This step is 
repeated until the required matrix order is obtained 
and until there are no more possible basic elements. 

Table 1 gives, as an example, the parameters used 
in the construction of several matrices with different 
ranges of resolution data. These matrices have been 
used effectively in phase determination procedures 
and they all led to satisfactory results, as will be 
shown below. However, it should be noted that for 
low-resolution data (3.5-2.5 A) the choice of the 
parameters may be very critical in building up the 
matrix since it can happen that the phase determina- 
tion procedure diverges even if the determinant and 
all eigenvalues are positive. 

The inversion procedure makes use of the 
Cholevski method, which permits us to take into 
account the advantage of the Hermitian properties of 
the K-H matrices and leads to a very easy file treat- 
ment without requiring the storage of the full matrix 
in the core memory of the computer. The K-H 
matrices used are usually well conditioned (the off- 
diagonal elements are small with respect to the 
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diagonal elements), providing the matrix order is not 
too near that for which the matrix becomes singular. 
For example, this property allows the calculation of 
the elements Dpq of the inverse matrix in single 
precision. 

Finally, the quality of the matrix can be assessed 
by the following criterion: the value of the deter- 
minant should be as low as possible (Appendix II) 
and should not oscillate as it decreases in value with 
increasing order. The Fourier coefficients of the r(r) 
function are directly determined from the values of 
Dpq using the relation (11). 

(b) The product r(r)p(r) function 
The method developed in paper 1 presented two 

main disadvantages: it was difficult to control a priori 
the number of estimated phases since they depend 
mainly on the choice of the structure factors EL, and 
it required a very large computing time (proportional 
to N:).  The direct-space formulation makes it poss- 
ible to overcome these difficulties: it leads to a system- 
atic determination of all structure factors and to a 
computing time which is considerably reduced, since 
the application of formula (14) makes implicit use of 
mM of regression equations (8) (M total number of 
reflexions), which is much larger than the number 
that can be exploited effectively in reciprocal space. 
The calculation can be done easily by using only three 
Fourier transformations; the computing time is then 
proportional to N log N instead of N2. * This scheme, 
however, may present a drawback. In reciprocal 
space, the structure factors EL were selected as a 
function of several criteria such as occupancy factor 
and mean value of the moduli of the elements for 
each vector EL. Here, no such selection is possible. 
Nevertheless, this is largely compensated for by the 
greater number of implicit estimations. 

Preliminary tests of the procedure were carried out 
by calculating phase extensions at several ranges of 
resolution and examining the phase errors as a func- 
tion of resolution and I EI (moduli of normalized 
structure factors). The results indicate that the prod- 
uct r(r)p(r) remains reasonably stable and the 
algorithm does extend phase information with 
reasonable precision. The results obtained in a phase 
extension from 2.3 to 1.9 ,~ are summarized in Table 
2. The phases are stable after two cycles of calcula- 
tions, indicating that only a small number of cycles 
will be necessary in practical applications. Table 3 
gives the mean values of the phase errors under two 
different conditions. In each case the mean value of 
phase errors is low whatever the range of the moduli. 

* CPU time on IBM 3 7 0 / 1 6 8 : 2  h 30min  per cycle for 2Zn 
insulin. The C P U  time for the matrix inversion is 10 min;  despite 
being propor t iona l  to m 3 it is not  the limiting step in the procedure.  
Moreover ,  in the direct-space procedure  used here, r(r) is calcu- 
lated only once. 

Table 2. Mean values of phase errors for the first two 
cycles of phase extension calculations from 2"3 to 1.9/~, 

resolution 

Ref: refinement range;  Ext: extension range. 

Number 
of 

deter- Resolution Mean value of phase 
mined errors 
phases IEI (A) Cycle 1 Cycle 2 

Ref. 3833 d > 2.3 33.1 32-2 
>0.0 Ext. 2977 1.9 < d < 2.3 40.7 40-7 

Ref. 1489 d > 2.3 16.7 13.7 
>1.0 

Ext. 1160 1 .9<d<2 .3  23.4 23.7 
Ref. 136 d > 2.3 10.7 8.0 

>2.0 
Ext. 77 1 .9<d<2 .3  13.3 12.8 

Table 3. Mean values of phase errors in: (a) phase 
refinement and extension from 2-8 to 1.9 ~ ;  ( b'ophase 

refinement and extension from 3.5 to 2-5 A 

Ref: refinement range;  Ext: extension range. 

N u m b e r  
o f  Mean value 

determined Resolution of  phase 
phases IEI (A) errors 

(a) 
Ref. 2165 d > 2.8 34 

>0.1 
Ext. 4346 1-9 < d < 2.8 52 
Ref. 912 d > 2.8 19 

>1 Ext. 1738 1.9< d < 2.8 36 
Ref. I11 d>2 .8  12 

>2 
Ext. 102 1.9 < d < 2.8 22 

(b) 
Ref. 1091 d > 3.5 35 

>0.1 Ext. 1904 2.5 < d < 3.5 56 
Ref. 565 > 1 d > 3.5 21 
Ext. 628 2.5< d <3.5 37 
Ref. 96 d > 3.5 15 

>2 
Ext. 24 2.5 < d < 3.5 11 

However, at high or medium resolution, the phase 
errors of the extension region are very similar to those 
of the refinement region; but when the resolution of 
the data is lower the phase error is less for the refined 
phases than for the extended phases. 

As a further test, the validity of the procedure was 
checked to higher resolution, with an order-400 
matrix constructed using both moduli and phases, to 
1.5/~ resolution, calculated from the refined atomic 
coordinates and associated temperature factors. The 
results showed that, after two cycles of refinement, 
the average error for IE] > 1 was only about 25 ° and 
that no pronounced divergence from the refined struc- 
ture had occurred. 

Figs. 2(a) and (b) illustrate these results by giving, 
for different limits of modulus, the mean values of 
phase errors as a function of the resolution for the 
first and second cycles, respectively; they are nearly 
constant. It is also clear that they are lower for the 
highest moduli. 

It was found that, for practical applications, the 
best method of recycling was to include in the next 
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estimate of p i+ t  (r) all the [EI > 1.0 while progressively 
increasing resolution until the resolution limit of the 
moduli was reached• This is justified by the fact that 
the precision is best for the structure factors of highest 
modulus. 

( c) Phase combination 
In each following cycle, or in the construction of 

the electron density maps, it is desirable to associate 
a figure of merit with each structure factor according 
to the accuracy of the calculated phases. This has 
been performed using a weighting scheme based on 
the modulus of the Eh,calc coefficients from the Fourier 
transform of the product ~-(r)p(r), following a pro- 
cedure which was developed by Bricogne (1976). For 
more efficiency, the information included in the 
results may be combined with that which comes 
initially from multiple isomorphous replacement or 
anomalous scattering methods. This problem has 
been considered previously by several authors 
(Woolfson, 1956; Sim, 1960). 

Blow & Crick (1959) have shown that the most 
probable phase is not necessarily the best to use, and 
that to obtain the minimal r.m.s, error of the electron 
density the optimal phase value ~h and the associated 
weight m (figure of merit) of a structure factor Eh,ob s 

a, (°) 
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0 
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o O  

• e • 

0 
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0 O0 0 
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O • . "" IEI>0,0 

o o I B I  • A 
o o o IZ : l> l , o  o o 
• t 

• I E I > I , 5  

2.8 1.9 
i I 

10 ~ ;~0 

a, (°) 
(a) 

1.5 d (A) 
i - .  

sin z 8 a -- 2 xl0 (A-) 

• " " . • " I E I > 0 , 0  

o o 

o o o o I E I > I , 0  
0 0 0 0 0 0 0 O 0  

• • O  O O 0 • • 
o • • 

, * * • * * [ E l > l ,  5 
• • o • • o •  

2.a  1.9 1.5 d (A) 
l l f = 

1'0 50 11~0 si~ am 10, (A_=) 

(b) 

Fig. 2. Distribution of phase errors as a function of resolution for 
different limits of moduli. Phase refinement to 1.5/~. (a) Cycle 
1; (b) cycle 2. 

must be defined by 
2~" 

mlEh.ob+l exp (i~h)= ~ P(~h)lEh,ob+l exp (ieh) d(ph, 
0 

where p(~Oh) is the probability density of the phase 
~0h. The figure of merit is the mean value of the phase 
error cosine• 

The phase information may come from several 
sources, but in this treatment we limit it to the case 
where it is provided only by isomorphous replacement 
(initial information to medium resolution) and by 
direct methods (final information to high resolution). 

The probability density of the phases associated 
with different information has been studied in the 
case of protein structures (Rossman & Blow, 1961; 
Hendrickson & Lattman, 1970). The main point to 
emphasize is that the function can be written as 
follows: 

P i s o ( q g h )  0C exp { A h , i s o  COS qgh-}- Bh,i~o sin ~h 

-~- C h , i s  O COS 2¢u+ Dh,iso s i n  2~Oh}. 

In practical applications this approach makes it 
simple to handle the contributions to the phase from 
different sources, e.g. partial structures, non-crystallo- 
graphic symmetry direct methods (Bricogne, 1976; 
Hendrickson, Love & Karle, 1973). It leads to an 
addition of the coefficients, each of which corre- 
sponds to the different probability densities. 

In the Hendrickson & Lattman procedure, the 
coefficients Ah,i~o; Bn,i~o; C,,i+o; Dh,i~o came directly 
from the heavy-atom refinement in the isomorphous 
derivatives through the lack of closure defined by the 
intensities. In the application we are concerned with 
here, the figures of merit associated with the structure 
factors were also available. From these two quantities 
we can recalculate the values of Ah,is o and Bh,iso, if 
we suppose that the density probability is unimodal 
instead of bimodal. This approximation is justified 
by the very good quality of the isomorphous phases. 

When we calculate the Fourier transform of the 
product function ~'(r)p(r), we get an estimation of 
the phase (~Och,calc) and the m o d u l u s  [Eh,calc of each 
structure factor. "Following a procedure developed 
first by Bricogne (1976), the values of the Eh,ca~¢'s can 
be used to derive for each structure factor, Eh,ob~, a 
probability function of the associated phase defined 
by 

P~alc(~Oh) ---- exp Ah cos (~0h -- ~Ph,calc) 

with 
A h  - "  2 1 E h , c ~ , d l E h , o b + l / k ,  

where k is obtained from the mean discrepancy 
between IEu.cald 2 and IEh.obd 2 in ranges of sin 2 0/A2: 

k = ( E  I IE.,ob,I 2 -  IE..ca,cl21)/Mk 
and Mk is the number of reflexions included in the 
summation• 
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The optimal value Ch of the phase is also the most 
probable and the associated figure of merit is 

m = I~(Ah)/Io(Ah) .  

The final probability of the phase can be defined by 

Pf(~Ph) = P~o(~h)P,::~t,:(~h), 

the product of the probability densities derived 
respectively from the results of direct and isomor- 
phous replacement methods. This leads us to consider 
the two sets of information as independent. It is clear 
that this hypothesis is not exactly justified because 
the isomorphous phases are used to initiate the direct- 
method procedures. However, it appears very 
difficult, even impossible, to account for the depen- 
dency rigorously. We must also note that the final 
probability function does not allow for the experi- 
mental errors (inaccuracy of intensities, normaliz- 
ation of the structure factors) and the fact that the 
phases are initially supposed known. 

We made use of this weighting procedure in the 
electron density calculations but not in the cyclic 
procedure. However, it would be possible to intro- 
duce it there, which would improve convergence. 

III. Application to 2Zn insulin diffraction data 

The effectiveness of the matrix methods in phase 
refinement and extension has been successfully 
demonstrated with model data calculated for 2Zn pig 
insulin which provide a good check on the phases 
and electron density at all resolutions. 

Data for the next part of the analysis consisted of 
13771 structure amplitudes to 1.5/~ resolution as 
measured in Oxford (Dodson, Dodson, Hodgkin, 
Isaacs & Vijayan, 1975). "Fhe magnitudes of E's 
appearing in the phase refinement and extension were 
determined by placing the data set on an absolute 
scale and normalizing it by taking into account all 
the atoms of the protein molecule and 285 oxygen 
atoms of the solvent. 

A set of 6700 phases to 1.9 ,~ resolution produced 
by the multiple isomorphous replacement method 
were used as a starting phase set. Phase refinement 
and extension were performed from 1.9 to 1.5 A with 
400-order matrices generated from observed moduli 
to 1.5/~. 

To assess the quality of the results, we made use 
of the final set of atomic coordinates produced by 
refinement to 1.5 A resolution with standard tech- 
niques (Dodson, Dodson, Hodgkin & Reynolds, 
1979), and we compared the phases produced by 
matrix methods, as well as the corresponding electron 
density maps, with those calculated from the refined 
atomic coordinates and associated temperature 
factors. 

( a ) Regression formula  
In the preliminary application of the regression 

equation method in reciprocal space, given in paper 
I, the influence of the matrix order and the data 
resolution on the accuracy of the results have been 
investigated. Two trials have been performed, viz 
phase extensions from 2.8 to 2-2 ~ and from 1.9 to 
1.5A. 

For the 2.8 to 2.2 ,~ phase extension, the quality 
of the electron density maps constructed by using the 
refined and extended phases showed a clear improve- 
ment with respect to those derived from the set of 
2.8 ,~ isomorphous phases. However, a precise analy- 
sis was not carried out owing to the progress with the 
1.5 ,~ study. 

In the case of the 1.9 to 1.5 A phase extension, the 
results are reviewed in detail. The parameters used 
in the construction of the matrices are given in Table 
I. A new matrix was built up after each cycle since 
the increasing number of determined phases led to a 
larger number of possible basic elements which re- 
sulted in a higher mean value for the modulus of the 
matrix elements. The results obtained in the phase 
determination procedure are summarized in Table 4. 
The angle shifts, which decrease quickly in three 
cycles, are given as a function of the figure of merit 
in Table 5. A comparison between the phases calcu- 
lated by phase extension and the phases (~ref) of the 
refined structure illustrate the effectiveness of this 
method (Table 6): 

the phases out to 1.9 ~ which were initially deter- 
mined by the isomorphous replacement method are 
clearly improved, particularly for structure factors 
with large moduli; 

a large number of new phases (1-9-1.5 ,~) are esti- 
mated with a good accuracy; 

the angle shifts are very low after two cycles of 
calculations. 

The improvement of electron density maps with 
respect to the 1.9,~ isomorphous phase maps is 
evident (Figs. 3-7). A rapid and precise plotting of 
the coordinates of 755 atoms was achieved very easily. 
They were used in seven cycles of difference Fourier 
synthesis calculations, followed by regularization 
(Dodson, Isaacs & Rollett, 1976) during which the R 
factor decreased from 0.40 to 0.27. More than 107 
independent water molecules were identified. Fig. 3 
gives an example of the corresponding electron 
density maps. 

( b ) Direct-space procedure 
A detailed analysis of the results obtained in phase 

refinement and extension from 1.9 to 1.5 A resolution 
is given as an example of the direct-space formulation 
procedure using the r(r)p(r) expression. The Fourier 
coefficients CH of the ~-(r) function were derived from 
an order-400 matrix which was constructed with par- 
ameters given in Table 1. The refined and extended 
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(a) 

Table 4. Selection of II Ul[m+t matrices 

L: Miller indices of  the basic element for the last column. 

Number  of  Mean values of  phase shifts (o) Number  of  Selection of  L 
determined Before phase After phase matrices Resolution 

phases (FOM) combination combination II Ullm+, d IELlmin 

Isomorphous 6325 67 
phases 

1st cycle 7233 74 74 39 1000 3.5 -< d <- 5.5 A, 
2nd cycle 9148 76 43 19 750 2.3 -< d -< 4 A 
3rd cycle 10 417 80 16 8 750 2.1 -< d -< 3.3 

1"55 
1"35 
1 "40 

Table 5. Mean values of angle shifts as a function of figure of merit 

Cycle 1 Cycle 2 
A ¢  after Aq~ after 

phase Number of  phase Number  of  
combination determined combination determined 

FOM AC/breg (o) (o) phases A qbreg (o) (o) phases AC~reg (o) 
0"0-0"5 85 75 819 64 53 364 22 
0"5-0.9 71 40 2065 48 23 2626 19 
0.9-1.0 56 11 763 31 9 1317 12 

Cycle 3 
Aq~ after 

phase Number  of  
combination determined 

(°) phases 

17 572 
9 3082 
4 2493 

Table 6. Mean values of the differences between the phases calculated from the refined atomic coordinates and 
those calculated by the regression equation method (°) 

IEI> 0"1 IEl> 1 IEl> 1.5 
Resolution (A): d >  1.5 1.9 1.5 1.9 1.5 1.9 

Isomorphous 60.0 52.8 53.9 
phases (6372) (2345) (616) 

1st cycle 58.6 56.0 49-5 43.0 43.1 39.2 
(7253) (6444) (2939) (2389) (723) (623) 

2nd cycle 59-0 54.0 51-6 38-9 42.4 34.6 
(9153) (6444) (4180) (2389) (994) (623) 

3rd cycle 62.6 54.1 57.3 39.2 48.8 34.7 
(I 0 412) (6444) (4973) (2389) (1158) (623) 

phases were determined directly by five cycles of 
calculations with the same function z(r). 

Phase results 

The quality of the results is illustrated in Fig. 4 
which gives for structure factors of modulus higher 
than 1 the mean values of the differences between the 
phases ~Prer, derived from the atomic coordinates 
refinement, and the phases q~ext, calculated by the 
extension phase method, as a function of resolution, 

A~p~ = (l~Pr~f-- q~¢xtl)n. 

These values are to be compared with the differences 
A~p2 obtained, in the same conditions, for the phases 
~Piso determined by the isomorphous replacement 
method to 1.9 A resolution, 

= (l rof--  isol>.. 

We recall that we made use of the phases ~Piso as 
starting set. Fig. 4 shows that not only are the phases 
~Pi~o corresponding to 1.9/~ resolution improved but 
a large number of new phases (1 .9-1.5/~)  are deter- 
mined with a good accuracy. For 5050 structure fac- 
tors, with a modulus higher than 1 and to 1.5 
resolution , Aq9 ! is 38 °, where ~ 2  is 54 ° for 2090 
structure factors ([EI > 1 and 1.9 A resolution). 

Table 7 gives the values of A~pt for different ranges 
in modulus and resolution. All the structure-factor 
phases (13 337) are determined with a phase error of 
52 ° . This means that, for the doubled number of 

# 
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(b) 
Fig. 3. Electron density after phase refinement and extension from 

1.9 to 1.5 ~ by regression equation method. (a) Molecule l, 
residues Al3-A14;  (b) molecule l, tyrosine Al4. 
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Table 7. Phase extension from 1.9 to 1.5 ~ meanphase 
errors as a function of  resolution and moduli of  normal- 

ized structure factors 

Ref: refinement range; Ext: extension range. 

Number of Resolution 
determined ( A )  A~o (o) 

phases IEI d> Atp2 A~pl 

Ref. 600 > 1.5 !.9 54 27 
Ref .+  Ext. 810 > 1.5 1.7 27 
Ref. + Ext. 1100 > 1-5 1.5 28 

Ref. 2390 > 1.0 1.9 53 33 
Ref. + Ext. 3550 > 1-0 1.7 35 
Ref. + Ext. 5050 > 1-0 1.5 38 

Ref. 6500 >0.1 !.9 61 49 
Ref. + Ext. 10 200 >0.1 1.7 51 
Ref. + Ext. ! 3 330 > 0.1 1.5 52 

structure factors to 1-5 A, resolution, th,_precision is 
better than that of the phases q~iso at 1.9 A resolution. 
As was also the case for the preliminary tests, the 
phase errors are lower for the highest moduli and do 
not depend very much on the resolution. 

The variation of the phase errors is given in Table 
8. These values stabilize very quickly and only three 
cycles of calculations are sufficient. The angle shifts 
for the two last cycles is 10 °. The figure of merit mexp, 
calculated following the scheme mentioned in § II(c), 
gives a satisfactory estimation of the precision, as is 
illustrated by the curve in Fig. 5, which represents 
the variations of A~o~ as a function of mex p. For the 
electron density calculations the different information 
for the phases ~%xt and ~Oiso has been combined follow- 
ing the procedure described above. 

Another attempt to refine and extend phases has 
been performed in the case of medium resolution (2.8 
to 1.9 A,). The results have shown that it was possible 
to get a reasonably good phase determination after 
three cycles of calculations. The mean value Aq~3 

of the difference between the extended phases ~oex, 
and the refined phases ~rer is" equal to 47 °. The error 
in the calculated phases is smaller for the refinement 
region (up to 2.8 ~,) than for the extension region 
(2.8 to 1.9/~,) but, in this last case, the error is nearly 
constant as a function of resolution. 

Some features of the agreement between the differ- 
ent phase-refinement-calculated phases and the crys- 
tallographically refined phases deserve comment. 
Firstly, the improvement in the phases (where E > 
1.0) is distinct and for the 1.5 A data the improve- 
ments extend to the data limit. Secondly, the 1.9 
extension works less well; the improvement in this 
study is only convincing out to 2 . 6 ~  spacing. 
Thirdly, the crystallographically refined phases agree 
better with the phases extended to 1 . 9 ~  from 
2.8/~, but at low resolution agree better with the 
isomorphous phases. This suggests that the phase 
refinement of the low-angle terms, which contain 
important and often large contributions from solvent 
and disordered atoms, suffers by inclusion in the 
1.9-1.5 .~ data, which of course contain scattering 
only from well defined atoms. 

Electron density maps 

A detailed analysis of the electron density maps 
calculated at 1 . 5 ~  resolution after refinement 
and extension of phases has been performed. A 
weighting scheme has been applied following the 
procedure given in § II(c). 

The overall impression is that the maps correspond 
to a resolution of almost 1.5 A, (Figs. 6, 7b, 8b). They 
show a distinct improvement with respect to the initial 
electron density maps, i.e. calculated with the isomor- 
phous phases at 1.9 A resolution, and are, in a large 
part, very close to the final maps, i.e. calculated after 
the refinement of the atomic coordinates at 1.5 ,~ 
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Fig. 4. Distribution of Aqh(O) and Aq~2(O) as a function of resol- 
ution. A~p~: errors in the phases after phase refinement and 
extension from 1.9 to 1.5 A, resolution. A~o2: errors in the initial 
phases (1.9/~). 
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Fig. 5. Distribution of phase errors calculated as a function of 
figure of merit before combination with isomorphous phases. 
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Resolution 
(~) a> 

Cycle 1 za~o 1 (o) 
Cycle 2 A~ 1 (°) 
Cycle 3 A~ I (o) 
Cycle 4 A~o I (°) 
Cycle 5 A~o I (°) 

Table 8. Variation of the phase errors during the five cycles of calculations 

IEI > 0.1 IEl> 1.0 IEl> 1.5 
1-5 1.7 1.9 1.5 1.7 1.9 1.5 1.7 1"9 

61 "4 58"3 53"7 48"9 43"9 38"6 39-6 34"6 33" 1 
55 "3 52"9 48 "9 42"3 37 "9 34"6 33 "3 31 "0 31 "0 
52"9 51-2 48-9 39-3 35-4 32-8 28-9 27-2 26-7 
51 "9 50"6 48.4 37 "6 34" 1 32"2 27 "8 26"0 25 "9 
52-3 51 "0 49"0 38 "3 35-0 33 "0 28"6 27"3 26"8 

(Figs. 7c, 8c). However, the comparison is less favour- 
able for the regions of low-level electron density 
corresponding to the disordered atoms of the side 
chains and to solvent molecules having a high 
temperature factor, which are also less accurately 
positioned in the final maps. 

We discuss below several particular features. 
Disulphide bridges. The six disulphide bonds of the 

asymmetric unit cell were already almost resolved in 
the initial maps. The position of all of them were well 
defined but, compared to the final position, some 
were in error by more than 0.5 A. Now, they all come 
out very clearly in the highest levels of the electron 
density. Fig. 6 gives an illustration of one of them: 
cystine A20-B19 mol. 2. The S atoms move towards 
their correct positions which can be determined with 
good accuracy. The corresponaing atomic coordi- 
nates are better than those derived from the initial 
maps. The deviation is now about 0.2/~ except for 
one of them where the discrepancy is still 0.4 ~.  

Polypeptide chain. As is the case for the electron 
density in the 1.9/~ map, the polypeptide chain is 
well defined. The atoms are now very close to being 

B24(Phe) 
B24(Phe} ~ 

B25(Phe) 

Fig. 6. The electron density in the 1-5 ~ map with phases refined 
and extended from 1.9/~. There is a satisfactory correspondence 
between the electron density maxima and the refined atomic 
position. The height of  the density also corresponds well to the 
atomic number  and the definition of  the atoms. Note that  the 
buried residues A20-BI9 cystine, B24 phenylalanine have well 
defined strong density;  B25 phenylalanine on the surface is a 
mobile s idechain with the weak density expected. The contour  
levels are approximately  0.3 e /~-3  beginning at 0.3 e /~-s .  

individually resolved and, in these regions, the coor- 
dinates can be placed with accuracy, as is illustrated 
in Figs. 6 and 7(b). 

Side chains. Side chains with small thermal 
motions were clearly described in the initial maps at 
1.9 ~.  Now they all have been further improved and 
they appear easily interpretable in regions for which 
the density is high. This is the case for the aromatic 
rings of phenylalanine, B24 of mols. 1 and 2 (Fig. 6) 
situated at the interfaces between the two monomers 
which constitute the asymmetric unit cell. For these 
two residues the temperature factor is about 10 A2. 
Side chains having higher thermal vibration appear 
in regions of lower density and are less accurately 
defined. However, it is worth noting that even these 
residues are often still improved after performing 
phase refinement and extension. 

Spurious peaks due to experimental and phase 
errors were present in the initial maps and sometimes 
made the interpretation of the corresponding regions 
difficult. After phase extension, these peaks are often 
reduced, signalling unreliable density, and making 
any atomic assignment risky at this stage of the struc- 
ture's interpretation. Fig. 8 gives an illustration of 
one of these areas in the different electron density 
maps. The final interpretation, derived from the 
refinement of atomic coordinates, i: ^quite different 
from the initial interpretation at 1.9Aresolution. 

Zn atoms. The rhombohedral form of insulin is 
obtained by crystallization in the presence of zinc, 
and the asymmetric unit cell contains two Zn atoms, 
placed in special positions along the threefold axis. 
The initial maps were very poorly defined around the 
positions of these atoms. The interpretation of these 
maps led to placing the two atoms at a half unit cell 
apart along the threefold axis. This corresponds to 
an error of about 1.5/~. For this reason, the interpre- 
tation of the structure of the solvent molecules was 
very difficult in this area. The position of the Zn atoms 
derived from the maps calculated after phase 
extension are clearly closer to the final maps although 
the error is still about 0.7/~. However, the improve- 
ment in the density allows easier interpretation of the 
solvent features in this area. 

Solvent molecules. A general characteristic of many 
direct methods, especially those using the tangent 
formula, is to flatten further the areas corresponding 
to low levels of electron density, making their inter- 
pretation sometimes difficult, even impossible. It is 
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interesting to note that the maps calculated after 
phase extension reveal the structure of well defined 
water molecules clearly and usually in correct posi- 
tions. To clarify this point, Fig. 9 indicates as a 
function of the final temperature factor the number 
of water molecules present in the maps compared 

° ~  a ~ 

© 

(b) 

(c) 

Fig. 7. Comparison of three electron density views for residues B3 
to B7 of molecule 1 and the surrounding solvent structure. The 
maps were constructed using phases determined by: (a) multiple 
isomorphous replacement method (1.9 ,~ resolution): (b) phase 
refinement and extension from 1.9 to 1.5 .~ resolution; (c) refine- 
ment of atomic positions by least-squares minimization and 
Fourier methods (1.5,~ resolution). These sections are from a 
difference Fourier map calculated with observed moduli  and 
phases corresponding to the refined structure in which ~ of the 
unit-cell volume is left out. The protein features are clearly 
present in all maps but most resolved in (b) and (c). Few water 
molecules, which are mostly ill defined, can be seen in (a). In 
(b), one water molecule which is coordinated to zinc on the 
threefold axis and is well defined does appear. The overall 
character of the water and peptide density is well defined in (c). 

% 
(a) 

(b) 

I 
(c) 

Fig. 8. Comparison of three electron density maps for residues 
BI3 of molecules l and 2. C) Refined atomic positions (1-5 ~); 
Q initial atomic positions ( 1.9/~). Maps are constructed by using 
phases determined by: (a) multiple isomorphous replacement 
method (1.9 A spacing); (b) phase refinement and extension 
from 1.9 to 1.5,~ spacing; (c) refined atomic positions and 
thermal parameters (same conditions as for Fig. 7c). 
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with those introduced in the atomic-coordinate 
refinement. 

The top of Fig. 7(b) gives a picture of an electron 
density region close to a Zn atom where many water 
molecules are present. Although the quality of this 
area is not as good as in the final electron density 
maps (Fig. 7c), it is clear that some water molecules 
come out more precisely than in the initial maps (Fig. 
7a). For example, near the Zn threefold site, an area 
of diffuse electron density in the isomorphous map, 
a water molecule appears clearly without any associ- 
ated spurious peaks. 

Conclusion 

These calculations have demonstrated that experi- 
mental phases can be improved and extended usefully 
by the maximum determinant procedure. The method 
benefits greatly from the reasonably good and exten- 
sive set of experimental phases and a high-resolution 
set of native data. The improvement in the phase 
angles from the isomorphous values is substantial 
and extends to the limit of the phase data. Beyond 
1.9/~, the limit of phased data, the errors in the 
extended phase (for terms E >  1) are remarkably 
small (38°). Our conclusions are: 

1. The experiments of this study and Sayre (1972) 
with rubredoxin (both with 1.5A data) show that 
with present procedures the ability of direct-method 
techniques to improve phases is conditioned by the 
quality and resolution of the phases available. At the 
other extreme, phase determination with a limited 
series based on solvent modelling has proved possible 
and has helped to produce a satisfactory set of low- 
order phases (Podjany, Schevitz & Sigler, 1981; 
Schevitz et al., 1981). These results demonstrate that 

nH=O 

IX\ 

(a) 

\ N  

, (b)  

\ \  
\ \  
\ \  
\ \  
\ \  

10 50 100 B~(A 2) 

Fig. 9. Distribution of the number of water molecules as a function 
of associated temperature factors (a) introduced in the atomic- 
coordinate refinement; (b) placed in the maps constructed after 
phase refinement and extension from 1.9 to 1.5/~, spacing. 

the structural information in the high-angle data is 
not lost in spite of their inaccuracy; with sufficiently 
good starting phases, it can be reconstructed. Thus 
the challenges of improving poor phases or extending 
phases from low resolution can be faced with 
optimism. 

2. The well behaved atoms with B < Bay generally 
are better defined and more accurately positioned. 
The poorly ordered atoms such as protein side chain 
and solvent atoms with B > Bay tend to have much 
reduced or no electron density. It was not possible 
to assign atomic positions for these atoms with any 
confidence. This effect in some ways simplifies the 
interpretation of the map and subsequent refinement 
by limiting the derived coordinates to those which 
have low B values. 

3. The effectiveness of this determinantal pro- 
cedure and that of least-squares refinement pro- 
cedures are similar but cannot be compared directly. 
The 1.9 A isomorphous map was generally very good 
and would have been readily interpreted for the most 
part but of course the structure had already been 
defined at 2.8/~ resolution. The extension and refine- 
ment of the 1.9/~, isomorphous phases, on the other 
hand, took relatively little time and led to a map from 
which more accurate coordinates could be deter- 
mined and where poorly defined structure was recog- 
nizable. The atomic coordinates derived from the 
1.9 ~ resolution m a p  contained errors while those 
derived from the 1.5/~ solution phase extended map 
were incomplete. Both sets nonetheless refined 
smoothly from 48 to 33% and 40 to 27%, respectively, 
in the early stages. Most importantly, they produced 
difference Fourier maps in which the poorly defined 
structure could be sensibly analysed. 

4. The need at present for reasonably good phases 
and extensive diffraction data means that the prin- 
cipal advantage of the determinantal method (that 
atomic parameters are not needed to extend and 
improve the phases) is most useful for proteins where 
sequence information is absent or incomplete. 

This work was carried out with the support of the 
CNRS, the British Diabetic Association, the Medical 
Research Council and the Kroc Foundation. 

APPENDIX I 

Variation of the occupancy factor 
as a function of r and R 

If the basic elements are chosen randomly inside a 
sphere of radius r, the reciprocal vector h associated 
with one basic element can be considered as a random 
variable (r.v.) and the corresponding density of prob- 
ability (d.p.) is given by 

0 i f lh[> r 
f ( h ) =  1 /V  i f lhl-<r 
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with V =  (4/3)'n'r 3, volume of  the sphere. Here, the 
r.v. is considered as a cont inuous variable. This is 
justified because of the large number  of  reflexions 
inside the sphere. 

Now, let us consider the vectors hi and h2 associated 
with two basic elements and the r.v.: 

hi2 = h i - h  2. 

The variables hi and h2 are independent  and iden- 
tical to h, hence the d.p. of  hi2 is given by 

g(hl2) = ~3 f(hl2 + h2)f(h2) d3h2 

f 0 if Ihi21 > 2r 
g(hl2) 

( v ( h ~ 2 ) / v  2) i f lh ,21<2r '  

where /)(hiE ) is the volume of the common part  of  
two spheres of  radius r with centres O and O' such 
that  

O O ' =  hi2. 

The v(hi2) is determined by 

v(hl2) = 2 i 7r( r 2 -  z2) dz 
D/2 

= ( 2 7 r / 3 ) ( r -  D / 2 ) 2 ( 2 r +  D / 2 )  

where D = Ih121. 
The d.p. of  g(hl2) can be expressed by 

I'0 if D > 2r 
g(hl2) 

(27rr3/3 V2)(1 - D / 2 r ) 2 ( 2  + D / 2 r )  if D -< 2r 

If we make use of  the r.v. u = htg/2r  with modulus  u, 

0 if u >  l 
g (h l2 )=  ( 1 / 2 V ) ( 1 - u 2 ) ( 2 u )  i f u _ < l '  

and take into account  the spherical symmetry  of  
g(h l2 ) ,  the d.p. of the r.v. D is given by 

f ( D )  = g(hl2)4rrD 2 

or 

0 if u >  1 
f ( D ) =  6 u 2 ( l _ u 2 ) ( 2 + u ) / r  i f u < l '  

which leads directly to the d.p. G(u) :  

0 if u >  1 

G ( U ) =  1 2 u 2 ( 1 - u 2 ) ( 2 + u )  i f u < l  

A representat ion of  this function is given in Fig. 1 
(§ II). As we expect, it is equal to 1 if r < ½ and then 
decreases to zero when r increases. 

A P P E N D I X  II 

To assess the quali ty of  the matrix II UII~ a general 
criterion is that  the value of  the determinant  should 
be as low as possible. This can be justified by the 
following (de Rango, 1969). 

The regression formula is derived from the prob- 
ability law of m structure factors (E, = E L , . . .  , E p  = 

EL-Hp, • • •, Em = EL-H,.), which is a Gaussian multi- 
dimensional  law defined by a covariance matrix II uII 
whose determinant  is D,,. 

The a prior i  knowledge of  the autocorrelat ion will 
diminish the entropy of the distribution which can 
be estimated by the Shannon information theorem 
(Shannon & Weaver, 1949). In the case of m- 
dimensional  cont inuous distribution, the entropy is 
defined by 

I ( E i , . . . ,  E p ,  . . . , E ~ )  

= - ~ . . . ~ . . . ~ p (  E i ,  . . . , Ep, . . . , E , , )  

x l o g e p ( E l , . . . ,  E p ,  . . . , Era) d E 1 . . ,  d E p .  . . dE , , .  

When the distr ibution is a Laplace Gauss law it has 
been shown (Renyi,  1966) that 

I ( E I , . . . , E ~ . . . , E m )  

=loge  ( 2 7 r e ) n / 2 D ~  2 for real variables 

and 

I ( E l , . . . ,  Ep, .  . . ,  Em) 

--log~ ( T r e ) ~ D ~  for complex variables. 

If we consider the random variables 
E~ . . . .  , E p , . . . ,  Em as independent  variables, the 
value of Dm is equal to 1 and the entropy is equal to 
m log~(Tre). But, when we define the variables 
E l , . . . ,  E p , . . . ,  E,~ by imposing the autocorrelat ion 
(i.e. all the elements UHp-nq of the matrix II UIIm are 
fixed and known),  the entropy of the distr ibution 
decreases since the quant i ty  IG = log Dr, is always 
negative (D~ < 1). 

So, the lower the value of Din, the higher the gain 
of information (decrease of entropy) related to the 
knowledge of II U I1,,,. The l c  may constitute a quanti-  
tative criterion of  selection for the K a r l e - H a u p t m a n  
determinant  to be used in a phase refinement and 
extension procedure.  
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Abstract 

X-ray spherical-wave focusing in multibeam dynami- 
cal diffraction by a biaxially bent single crystal has 
been considered. In contrast to cylindrical lenses 
already studied in the two-beam case, which presen- 
ted a line focus, here wave packets focusing in two 
directions into a single point are dealt with. The 
conditions for focusing of the trajectories of the X-ray 
Bloch waves are established and the algorithm for 
the determination of the parameters of corresponding 
X-ray optical systems is described. Possible sets of 
parameters are calculated. The X-ray wave field distri- 
bution in a crystal is simulated numerically. The 
calculated topographs confirm the existence of the 
focusing effect. 

0108-7673/85/010017-09501.50 

I. Introduction 

Optics for focusing X-rays and neutrons have been 
developed  in two main directions - Fresnel zone 
plates for soft radiation ( - 4 0 / ~ )  (Kirz, 1974; Kear- 
ney, Klein, Opat & G/ihler, 1980) and diffraction 
lenses based on single crystals for hard radiation 
( -  1 ~ ) .  The operation of such lenses is based on the 
effect of dynamical focusing of X-rays (or neutrons), 
which consists of the compression of coherent wave 
packets during dynamical scattering by single crystals. 
Until recently both theorists and experimenters have 
studied this effect mainly for two-beam diffraction 
(see references in the paper by Kushnir & Suvorov, 
1982). In this case wave packets can be compressed 
by a crystal only in one direction determined by the 
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